Прочитайте онлайн 100 великих тайн космонавтики | Первые опыты

Читать книгу 100 великих тайн космонавтики
3316+4157
  • Автор:
  • Язык: ru

Первые опыты

«Мне сверху видно все…»

Стимулом к возрождению более-менее мощных ракет стали начатые в 1900 году немецким инженером Альфредом Маулем опыты по подъему на большие высоты фотоаппаратов для аэросъемки. На протяжении 7 лет он построил шесть ракет. При этом Мауль сначала испытывал ракету без фотокамеры; затем следовала серия пробных снимков местности, и, наконец, снималась определенная территория по заказу.

По результатам испытаний ракет 1903 года Мауль получил патент «Ракетный аппарат для фотографирования предварительно выбранных участков местности». В приложении к патенту он описывает, как можно бороться с вращением ракеты с помощью аэродинамического стабилизатора.

Затем он догадался использовать гиростабилизацию. Электрический импульс в полете освобождал падающий груз, который раскручивал горизонтально расположенный маховик; при этом два маховичка поменьше устраняли случайное вращение ракеты вокруг главного маховика.

Онлайн библиотека litra.info

Снимок, сделанный камерой А. Мауля

Благодаря этому нововведению его ракеты двигались по заранее рассчитанной траектории и снимки местности внизу получались очень четкими.

Срабатывание затвора фотокамеры в нужный момент достигалось так. На носу ракеты устанавливалась небольшая пластинка, прижимающая пружину напором воздуха при движении ракеты. В верхней точки траектории ракета на долю секунды «останавливалась», давление набегающего воздушного потока падало, пружина освобождалась, приводя в действие затвор фотокамеры.

Мауль добился того, что при подъеме ракеты на высоту до 800 м можно было фотографировать местность с хорошей детализацией. Участки местности для съемки можно было выбрать на месте старта с помощью специального прибора, установленного на лафете. После нескольких запусков полученные кадры состыковывались, давая довольно подробный план местности на удалении до 80 км. На нем были хорошо видны дома, улицы, дороги.

А чтобы ракета и аппаратура уцелели при падении на землю, использовался посадочный парашют. При этом ракета разделялась на две части. Непосредственно на стропах парашюта висел головной конус со спрятанной в нем фотокамерой. Ниже на десятиметровой ленте висела сама ракетная гильза со стабилизатором.

Первые эксперименты проводились в глубокой тайне. Мауль прекрасно представлял, как могут пригодиться его ракеты во время военных действий: их значительно труднее вывести из строя, чем привязные аэростаты, которые применялись тогда для разведки местности. Так, в одном из экспериментов сотня пехотинцев специально стреляла по ракете во время снижения — но никто в нее так и не попал: слишком мала оказалась цель.

Свои исследования Мауль частично финансировал сам, частично деньги и заказы поступали от военных. Общие затраты составили 100 тысяч немецких «довоенных» марок. Однако хотя себестоимость одной ракеты в 70 марок была значительно ниже стоимости привязного аэростата, изобретение так и не нашло широкого применения. Пока инженер вел переговоры с военным министерством, качественные фотографии научились получать с самолетов. В итоге шпионить с помощью ракет продолжили лишь во второй половине ХХ века с появлением первых спутников.

Верхом на пороховой бочке

Впрочем, о самих ракетах немцы не забыли и в начале ХХ столетия. Летом 1927 года несколько человек встретились в задней комнате ресторана немецкого городка Бреслау. Выпили пива, поели сосисок с капустой… А заодно и создали объединение, названное Обществом космонавтики (Verein für Raumschiffahrt). Правда, в других странах эта организация вскоре стала известной как Немецкое ракетное общество.

Президентом на том пивном собрании выбрали инженера Иоганна Винклера, а он, в свою очередь, вскоре наладил издание ежемесячного журнала «Ракета» (Die Rakete), в котором регулярно публиковались наиболее ценные идеи и проекты членов общества.

Общество межпланетных сообщений росло очень быстро — среди его членов были профессор физики Герман Оберт, летчик-изобретатель Макс Валье, инженеры Франц фон Гефт, Гвидо фон Пирке, Ойген Зенгер и многие другие, с именами которых мы еще встретимся в этой книге. А потому вскоре на членские сборы и добровольные пожертвования при обществе был организован и фонд, финансировавший самые оригинальные разработки.

Познакомимся поближе хотя бы с некоторыми членами этого объединения, их идеями и делами.

Онлайн библиотека litra.info

Герман Оберт

Германа Оберта иногда называют «немецким Циолковским». Действительно, в конце 1923 года он так же, как и Константин Эдуардович, выпустил в Мюнхене невзрачную на вид брошюру «Ракета и межпланетное пространство». В этой книжке Г. Оберт, подобно своему русскому коллеге, писал о том, что «современное состояние науки и технических знаний позволяет строить аппараты, которые могут подниматься за пределы земной атмосферы». А дальнейшее усовершенствование этих аппаратов со временем приведет к тому, что они будут развивать такие скорости, которые позволят им преодолеть силу земного притяжения и вынести на околоземную орбиту не только грузы, но и даже людей.

Однако была между этими людьми и существенная разница. Если Циолковского, как уже говорилось, мало интересовало, сколько могут стоить его «игрушки» — он был чистой воды теоретиком, а скорее даже фантазером, — то Оберт с самого начала ставил дело на коммерческую основу. «В определенных условиях изготовление таких аппаратов может стать прибыльным делом», — сообщает он.

Кстати, утилитарный подход имел место даже в издательско-популяризаторской деятельности Оберта. И первая его книга, и вторая «Пути осуществления космического полета» переиздавались неоднократно, принеся ощутимый доход.

В своих трудах Оберт не только подробно рассказывал о том, что было сделано до него, но и выдвигал собственные, довольно ценные идеи. Так, скажем, он предложил идею «воздушного старта», которую пытаются реализовать ныне наши и иностранные конструкторы. А именно: ракеты должны стартовать не с земли, а с высоты 5500 м и более над уровнем моря, будучи подвешенными к специальным аэростатам или дирижаблям.

Причем один из его космических кораблей, получивший название «Модель Е», имел весьма солидные размеры даже по современным меркам. Общая высота всей ракеты, рассчитанной на двух пассажиров, оценивается Обертом как «примерно соответствующая высоте четырехэтажного дома», а ее масса — 288 т!

Предполагалось, что она будет состоять из двух частей: первая, разгонная ступень работает на спирте и жидком кислороде, а вторая, при том же окислителе, использовала жидкий водород. Согласитесь, в 20-х годах прошлого века было предложено вполне современное решение топливной проблемы.

Причем в верхней части второй ступени Оберт предлагал разместить «аквариум для земных жителей», то есть обитаемый отсек с иллюминаторами, позволяющими вести астрономические наблюдения.

Чтобы преодолеть земное притяжение, ракета, как показали расчеты Оберта, должна была лететь 332 с при ускорении 30 м/с2 и достичь высоты 1653 км. Возвращение же пассажирской кабины на Землю Оберт планировал посредством парашюта либо при помощи специальных несущих поверхностей и хвостовых стабилизаторов, позволяющих реализовать планирующий спуск.

В описаниях его еще немало деталей и частностей, которые были затем реализованы (или выдуманы заново) современными конструкторами. Так, скажем, Оберт предусмотрел выход в открытый космос. «На летящей ракете при выключенном двигателе опорное ускорение отсутствует, и пассажиры могут в специальных костюмах выходить из пассажирской кабины и „парить“ рядом с ракетой, — писал он. — Костюмы должны выдерживать внутреннее давление в 1 атмосферу»…

И далее: «Нам кажется непрактичным давать человеку, находящемуся вне ракеты, воздух через шланг из пассажирской кабины, целесообразнее подавать ему сжатый или жидкий воздух из специального баллона». Кроме того, указывает Оберт, человек в скафандре должен быть обязательно привязан к ракете канатом, в который могут вплетены также телефонные провода. Подумал он также и о шлюзе — трубе, «которую можно герметически закрывать с обеих сторон».

В общем, когда читаешь все это, кажется, что выход А. А. Леонова был осуществлен по сценарию Оберта.

Впрочем, Оберт был не единственным членом ракетного общества, кто хорошо владел пером. В 1924 году популяризацией идеи межпланетных путешествий занялся также мюнхенский литератор и бывший пилот Макс Валье. В своей книге «Полет в мировое пространство» он, в частности, предлагает способ превращения обычных самолетов в космические путем замены двигателей внутреннего сгорания ракетными.

Еще одну книгу на ту же тему издал и Вальтер Гоман (по другой транскрипции — Гоманн или Хоманн), архитектор из города Эссена. Он мыслил строительными категориями, а потому описал целую «пороховую башню», с помощью которой он и предлагал стартовать в космос. В 1925 году издательство Ольденбурга выпустило его книгу «Достижимость небесных тел» (Die Erreichbarkeit der Himmelskörper).

В ней Гоман обрисовал такую конструкцию. Множество дисков из прессованного пороха, сложенных столбом, венчала капсула с двумя пассажирами. Каждый слой пороха представлял собой количество топлива, необходимого для работы в течение одной минуты: самый большой диск снизу необходим для работы в первую минуту, следующий — чуть поменьше — во вторую и так далее. Исходя из расчета на 30-суточный полет, Гоман оценил вес каюты и припасов в 2260 кг. При этом вес всей «пороховой башни» должен был составить 2 799 000 кг!

Для облегчения спуска на Землю Гоман предлагал к летящему из межпланетного пространства со скоростью 11,2 км/с снаряду приделать тормозящие поверхности, которые задерживали бы его полет в земной атмосфере. Кроме того, сам спуск должен был производиться по спирали: корабль описывал бы вокруг Земли все меньшие и меньшие эллипсы, верхушки которых пронизывали бы земную атмосферу на высоте 75 км, пока скорость полета не уменьшится до необходимой величины. Далее полет переходит в планирование по глиссаде длиною 3646 км.

Проект во многом наивный, но вот спуск по спирали с применением тормозных плоскостей несет в себе рациональное зерно.

Другой энтузиаст космонавтики — австрийский инженер Франц фон Гефт — получил известность благодаря тому, что теоретически разработал программу испытаний высотных и межпланетных ракет.

На съезде естествоиспытателей в сентябре 1924 года в Инсбруке фон Гефт предложил конструировать ракеты, способные поднять полезный груз весом 500–800 кг на высоту от 100 до 200 км. По мнению Гефта, испытания таких ракет имели бы чрезвычайно важное значение для науки.

Далее следовало создать ракеты, которые могли бы, поднявшись до высоты в 1000 км, в течение нескольких часов облететь Землю в качестве искусственного спутника, пролетая над обоими ее полюсами. При этом можно было бы произвести аэросъемку, а на ее основе создать уточненную карту Земли.

Ракета еще больших размеров может быть использована и для фотографирования обратной стороны Луны, затем Марса и Венеры. Таким образом, Франц фон Гефт был первым, кто заявил о возможности картографирования Солнечной системы на самом первом этапе ее освоения.

Далее, в статье «Завоевание Вселенной» (Dir Eroberung des Weltalls), опубликованной в 1928 году, австрийский инженер дал описание предполагаемых им опытов с ракетами разных типов под общим обозначением RH (от Rakete-Haft — «Ракетная сцепка») и порядковыми номерами в римской числовой системе.

Например, RH I — разновидность регистрирующей ракеты длиной 1,2 м, диаметром — 20 см и весом — 30 кг. Сначала воздушный шар должен был поднять ракету вместе с полезным грузом — «метеорографом» весом в 1 кг — на высоту 10 км. Затем ракета автоматически отцеплялась, включался ее собственный двигатель, и 10 кг чистейшего спирта вкупе с 12 кг жидкого кислорода в качестве окислителя позволяли поднять прибор еще на 90 км. Благополучное возвращение аппаратуры на землю гарантировал специальный парашют.

Космический корабль RH V предназначался для межпланетных перелетов и представлял собой «летающее крыло» с установленным на корме пакетом ракет. Стартовать он должен был с воды, поднимаясь до высоты 25 км по вертикали, а затем переходя на пологую траекторию. Начальный вес RH V — 30 т, конечный — 3 т, длина — 12 м, ширина — 8 м, высота корпуса — 1,5 м. Количество членов экипажа — от 2 до 4 человек. Максимальная скорость полета — 9,2 км/с.

Франц фон Гефт полагал, что вместе с отделяемыми вспомогательными ракетами-ускорителями RH VI (вес — 300 т), RH VII (вес — 600 т) и RH VIII (вес — 12 000 т) его корабль способен развить скорость 27,6 км/с и добраться до Луны, Марса и Венеры.

Интересно, что изобретатель предусмотрел возможность многоразового использования стартовых разгонщиков. В головной части каждого из них имелась кабина для пилота, который после разгона и отцепки производил спуск и приводнение отработавшего свое разгонщика. Нам бы сегодня такую конструкцию!

«Женщина на Луне» и другие хитрости

Довольно скоро члены Немецкого ракетного общества перешли и от слов к делу. Хотя Германия в те годы переживала далеко не лучшие времена, отдуваясь после проигрыша Первой мировой войны и выплаты огромных контрибуций странам-победительницам, Максу Валье и его компаньонам удалось найти кое-какие источники финансирования для первых экспериментов по созданию ракет. В частности, им удалось заинтересовать автомобильного магната Фрица фон Опеля, который спонсировал создание «ракетного автомобиля».

Испытания автомобиля-ракеты прошли с большим шумом — как в прямом, так и в переносном смысле. Так что фон Опель не прогадал, и реклама его детищу получилась отличная. Правда, практической ценности автомобили, снабженные батареями пороховых ракет, не имели.

Тогда хитрый Валье зашел с другой стороны. Он предложил фон Опелю провести еще и серию опытов с ускорителями для самолетов. В июне 1928 года на горе Вассеркуппе в Западной Германии был подготовлен к старту самолет, точнее, планер типа «утка». Он был оснащен ракетными двигателями, созданными на пиротехнической фабрике «Синус», принадлежащей инженеру Фридриху Зандеру, который также состоял членом Немецкого ракетного общества.

Сам Макс Валье не смог участвовать в этих работах, поскольку чуть раньше погиб во время испытаний нового ракетного двигателя.

Онлайн библиотека litra.info

Ракета «Мирак»

Впрочем, его сподвижники тоже поначалу не могли похвастать особыми успехами. Сначала летчику-испытателю Штаммеру вообще не удалось подняться в воздух. Во второй раз планер взлетел, но вскоре из-за неисправности был вынужден приземлиться, пролетев всего около 200 м.

Лишь в третий раз, когда на планер установили два ракетных двигателя на твердом топливе с тягой по 20 кг, летчику удалось пролететь 1500 м. Причем, как отметил пилот, полет, длившийся считаные минуты, «был приятен ввиду отсутствия вибраций от вращающегося винта».

Но, к сожалению, этот успех оказался единичным. При следующем испытании планер загорелся в воздухе. Пилоту чудом удалось посадить аппарат.

Впрочем, ремонту он уже не подлежал. Тогда фон Опель заказал новый ракетный планер. Он был готов к летным испытаниям 30 сентября 1929 года. И вскоре совершил полет продолжительностью около 10 мин. со скоростью около 160 км/ч. Однако при посадке он опять-таки сгорел.

Следующая попытка взлета немецкой ракетной техники связана с именем уже знакомого нам Германа Оберта. Успешный литератор опять-таки решил перейти от слов к делу и осенью 1928 года уговорил кинорежиссера Фрица Ланга и других создателей фантастического фильма «Женщина на Луне» использовать для рекламы демонстрационный запуск настоящей ракеты.

Получив деньги, Оберт вместе инженером Рудольфом Небелем и русским эмигрантом Шершевским построил ракету «Кегельдюзе». Она представляла собой алюминиевую сигару длиной около 1,8 м. Причем дюзы, через которые вырывались пороховые газы, были расположены не в корме, как обычно, а в носу ракеты. Оберт полагал, что «ракета с носовой тягой» будет более устойчива в полете. Однако на практике изобретателям так и не удалось добиться устойчивого горения пороховых шашек.

Впрочем, неудача не очень расстроила энтузиастов. Напротив, общество сплотило свои ряды и на одном из заседаний решило выкупить оборудование, изготовленное по заказу фирмы «Уфа-фильм» для «лунной ракеты», чтобы продолжить эксперименты. Причем Рудольф Небель предложил оснастить ракету уже жидкостным двигателем, имевшим ряд преимуществ перед твердотопливным.

Ракета «Кегельдюзе» была создана и в назначенный для испытаний день даже запущена, несмотря на проливной дождь. Причем в ее запуске принимали самое непосредственное участие молодые члены общества Клаус Ридель и студент Вернер фон Браун.

Довольный увиденным, доктор Риттер выдал Оберту официальный документ, в котором свидетельствовалось, что «двигатель „Кегельдюзе“ исправно работал 23 июля 1930 года в течение 90 с, израсходовав 6 кг жидкого кислорода и 1 кг бензина, развив при этом тягу около 7 кг».

После успеха с «Кегельдюзе» члены общества взялись за разработку ракеты «Мирак». Испытательный стенд разместили на семейной ферме Риделей неподалеку от саксонского городка Бернштадта. Однако в сентябре 1930 года ракета взорвалась прямо на стенде.

К счастью, никто особо не пострадал. А само известие о взрыве наделало столько шума в местной прессе, что на частные пожертвования Небель вскоре смог приобрести участок площадью в 5 кв. км в районе Рейникендорфа, рабочего пригорода Берлина. Здесь и был 27 сентября 1930 года основан ракетный полигон, который Небель назвал «Ракетенфлюгплатц» («Ракетный аэродром»).

На этом ракетодроме было произведено испытание второй модели ракеты «Мирак», которая представляла собой увеличенную копию первой. Однако и она взорвалась весной 1931 года.

Но упорные ракетчики решили построить третью ракету, учтя предыдущие ошибки. Новый двигатель для нее состоял из двух секций, сваренных вместе, хорошо работал на стенде, поглощая 160 г жидкого кислорода и бензина за одну секунду, развивая взамен тягу в 32 кг! Ракетчики прозвали его «яйцом» за сходство по форме и размерам с куриным продуктом.

Но пока готовились летные испытания «яйца», Иоганн Винклер при финансовой поддержке фабриканта Хюккеля построил и запустил ракету HWR-1 с жидкостным двигателем, застолбив таким образом свой приоритет. Случилось это 14 марта 1931 года.

Тем не менее в тот же день на «Ракетенфлюгплатц» с диким ревом стартовал и «Репульсор-1» — модификация «Мирака». Взлет получился неудачным: аппарат ударился о крышу соседнего здания и, спикировав, упал на землю с работающим двигателем.

Работа над «Репульсором-2» началась в ту же ночь. Ударными темпами новая модель была подготовлена к запуску уже 23 мая 1931 года. На этот раз «Репульсор» благополучно взлетел, достиг высоты 60 м, затем перешел на горизонтальный полет и перелетел через весь «Ракетенфлюгплатц». Ракетчики потом с трудом нашли его висящим на ветвях большого дерева в 600 м от старта. При этом модель оказалась совершенно разбитой.

Следующий «Репульсор-3» опять-таки был построен всего за несколько дней и отличался от предыдущих лучшими характеристиками. На испытаниях, проведенных в начале июня, ракета достигла высоты 450 м. Но тут по неизвестной причине сработал часовой механизм выбрасывания парашюта. Парашют раскрылся, но ракета продолжала лететь, разорвав купол в клочья. Описав огромную дугу, она приземлилась за пределами плаца и опять-таки разбилась.

Ракеты стали вылетать за пределы плаца все чаще и чаще. Дело в конце концов кончилось тем, что очередной «Репульсор» врезался в крышу соседнего сарая и поджег его. И хотя сарай был старым, ничего ценного в нем не хранилось, но он, к несчастью, принадлежал полицейскому участку, находившемуся напротив плаца. Нагрянула полиция, последовало долгое разбирательство всех обстоятельств дела, ракетчикам пришлось оплатить стоимость старого сарая и пообещать впредь быть осторожнее.

Всего к концу 1933 года в «Ракетенфлюгплатц» было осуществлено 87 пусков ракет и 270 запусков двигателей на стенде. Кто знает, как пошли бы дела дальше, но тут к власти пришел Гитлер. И на полигоне вскоре появились молодые люди в серо-голубой форме — представители «Дейче люфтвахт». Они сказали, что это место передано им под учебный плац.